Process Performance Evaluation Using Evolutionary Algorithm
نویسندگان
چکیده
Nowadays every business is using different quantitative measures and techniques to assess peiformance of their products! services. It is well known that different manufacturing processes very often manufacture products with quality characteristics that do not follow normal distribution. In such cases, fitting a known non-normal distribution to these quality characteristics would lead to erroneous results. Furthermore, there is always more than one characteristic Critical to Quality (CTQ) in the process outcomes and very often these quality characteristics are correlated with each other. In this paper, we assess peiformance of such a bivariate process data which is non-normal as well as correlated. We will use the geometric distance approach to reduce the dimension of the correlated non-normal bivariate data and then fit Burr distribution to the geometric distance variable. The optimal parameters of the fitted Burr distribution are estimated using Evolutionary Algorithm (EA). The results are compared with those using Simulated Annealing (SA) algorithm. The proportion of nonconformance (PNC) for process measurements is then obtained by using the fitted Burr distributions based on the two methods. The results based on both search algorithms are then compared with the exact proportion of nonconformance of the data. Finally, a case study using real data is presented.
منابع مشابه
Solving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملUsing composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir
In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...
متن کاملAn Evolutionary Multi-objective Discretization based on Normalized Cut
Learning models and related results depend on the quality of the input data. If raw data is not properly cleaned and structured, the results are tending to be incorrect. Therefore, discretization as one of the preprocessing techniques plays an important role in learning processes. The most important challenge in the discretization process is to reduce the number of features’ values. This operat...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملDesign of IIR Digital Filter using Modified Chaotic Orthogonal Imperialist Competitive Algorithm (RESEARCH NOTE)
There are two types of digital filters including Infinite Impulse Response (IIR) and Finite Impulse Response (FIR). IIR filters attract more attention as they can decrease the filter order significantly compared to FIR filters. Owing to multi-modal error surface, simple powerful optimization techniques should be utilized in designing IIR digital filters to avoid local minimum. Imperialist compe...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کامل